Pomocne twierdzenia przy rozwiązywaniu zadań.
Twierdzenie o okręgu wpisanym w czworokąt.
Rys. 1.
W czworokąt można wpisać okrąg wtedy i tylko wtedy, gdy sumy długości przeciwległych boków czworokąta są równe.
Założenie: W czworokąt jest wpisany okrąg.
Teza: Sumy długości przeciwległych boków czworokąta są równe.
Dowód. Oznaczenia jak na rys. 1. $|AB|+|CD|=p+q+m+n\ $ i $|AD|+|BC|=p+q+m+n\ $ zatem
$|AB|+|CD|=|AD|+|BC|.$
Dowód twierdzenia odwrotnego pozostawiam czytelnikom.
Twierdzenie o okręgu opisanym na czworokącie.
Rys. 2.
Na czworokącie można opisać okrąg wtedy i tylko wtedy, gdy sumy miar przeciwległych kątów czworokąta są równe.
Założenie: Na czworokącie jest opisany okrąg.
Teza: Sumy miar przeciwległych kątów czworokąta są równe.
Dowód. Oznaczenia jak na rys. 2. $|\angle{BAD}|=x\ $ i $|\angle{BCD}|=y.\ $ Miary kątów środkowych opartych na tych samych łukach co kąty $\angle{BAD}\ $ i $\angle{BCD}\ $ są dwukrotnie większe i wynoszą odpowiednio $2x\ $ i $2y.\ $ $|\angle{BAD}|+|\angle{BCD}|=x+y=\frac{1}{2}(2x+2y)=\frac{1}{2}\cdot 360^0=180^0,\ $ co kończy dowód.
Dowód twierdzenia odwrotnego pozostawiam czytelnikom.
Twierdzenie Ptolemeusza
W czworokącie wpisanym w okrąg iloczyn długości przekątnych jest równy sumie iloczynów długości przeciwległych boków.
$|AC|\cdot|BD|=|AB|\cdot|CD|+|BC|\cdot|AD|. \\$
Zadanie
Przeciwległe boki czworokąta wpisanego w okrąg leżą na przecinających się prostych. Proste przecinają się pod kątami $\alpha\ $ i $\beta.\ $Obliczyć miary kątów czworokąta.Rozwiązanie. Oznaczenia jak na rysunku. Miary kątów wewnętrznych czworokąta przy wierzchołkach $A,B,C,D,\ $ to $|\angle{A}|,|\angle{B}|,|\angle{C}|,|\angle{D}|.\ $ Ponieważ czworokąt $ABCD\ $ jest wpisany w okrąg więc$|\angle{A}|+|\angle{C}|=|\angle{B}|+|\angle{D}|=180^0.\ $
W trójkątach $ADL\ $ i $CDK\ $ mamy: $|\angle{A}|+|\angle{D}|+\beta=180^0\ $
i $|\angle{C}|+|\angle{D}|+\alpha=180^0\ $. Dodając stronami otrzymamy: $ |\angle{D}|=90^0-\frac{\alpha+\beta}{2}\ $ i dalej $ |\angle{B}|=90^0+\frac{\alpha+\beta}{2},\ |\angle{A}|=90^0+\frac{\alpha-\beta}{2},\ |\angle{C}|=90^0-\frac{\alpha-\beta}{2}.$
Zadanie
Wykaż, że jeżeli dwusieczne wewnętrznych kątów czworokąta przecinają się w czterech punktach, to na czworokącie wyznaczonym przez te punkty można opisać okrąg.Rozwiązanie.
W czworokącie $ABCD\ $ suma miar kątów wewnętrznych wynosi $360^0,\ $ zatem
$2\alpha+2\beta+2\gamma+2\delta=360^0,\ $ stąd $\alpha+\beta+\gamma+\delta=180^0. $
Policzmy sumę miar przeciwległych kątów czworokąta $KLMN:\ \phi+\omega=180^0-(\alpha+\beta)+180^0-(\gamma+\delta)=360^0-180^0=180^0,\ $ zatem na czworokącie $KLMN\ $ można opisać okrąg.
Brak komentarzy:
Prześlij komentarz